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Hydroelectric Power

Itaipu (14 GW)



Yuba, Bear and South Feather Hydrological Basin



SDDP

Stochastic Dual Dynamic Programming



SLP-T

z∗ = min
x1≥0

c1x1 + Eξ2|ξ1V2(x1, ξ2)

s.t. A1x1 = B1x0 + b1

where for t = 2, . . . , T,

Vt(xt−1, ξt) = min
xt≥0

ctxt + Eξt+1|ξ1,...,ξtVt+1(xt, ξt+1)

s.t. Atxt = Btxt−1 + bt

and where VT+1 ≡ 0

Vt(·, ξt) is piecewise linear and convex



SLP-T Assumptions for SDDP

• Relatively complete recourse, finite optimal solution

• ξt = (At, Bt, bt, ct) is inter-stage independent

• Or, (At, Bt, ct) is inter-stage independent and bt satisfies, e.g.,

– bt = Ψ(bt−1) + εt with εt inter-stage independent; or,

– bt = Ψ(bt−1) · εt with εt inter-stage independent

• Sample space: Ωt = Σ2 × Σ3 × · · · × Σt with |Σt| modest

• T may be large



What Does “Solution” Mean?

A solution is a policy



SDDP
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… 

(a) Forward Pass
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(b) Backward Pass



SDDP Master Programs

min
xt,θt

ctxt + θt

s.t. Atxt = Btxt−1 + bt
−Gk

txt + θt ≥ gkt , k = 1, 2, . . . , K

xt ≥ 0



Partially Observable

Multistage Stochastic Programming

Or, an alternative to DRO when you don’t really know the distribution

An apology: Not talking about Wasserstein-based DRO for SLP-T via
an SDDP Algorithm (with Daniel Duque)



Policy Graphs (Dowson)

A policy graph for SLP-3 with inter-stage independence:
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Unfolds to a scenario tree:
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Policy Graphs

A Markov-switching model:

Random transitions:



Inventory Example
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Demand model A: P(ω = 1) = 0.2 P(ω = 2) = 0.8

Demand model B: P(ω = 1) = 0.8 P(ω = 2) = 0.2

Di : Di(x) = min
u,x′≥0

u + Eω[Hi(x
′, ω)]

s.t. x′ = x + u

Hi : Hi(x, ω) = min
u,x′≥0

2u + x′ + ρDi(x)

s.t. x′ = x + u− ω



Policy Graphs

Each node i:

u = πi(x, ω)
x′ = Ti(x, u, ω)

Ωi

Ci(x, u, ω)

x x′
ω

A policy graph:

• G = (R,N , E ,Φ)

• ωj ∈ Ωj: node-wise independent noise

• feasible controls: u ∈ Ui(x, ω)

• transition function: x′ = Ti(x, u, ω)

• one-step cost function: Ci(x, u, ω)



Policy Graphs

min
π

Ei∈R+; ω∈Ωi
[Vi(xR, ω)] (1)

where

Vi(x, ω) = min
u,x̄,x′

Ci(x̄, u, ω) + Ej∈i+; ϕ∈Ωj
[Vj(x

′, ϕ)]

s.t. x̄ = x

u ∈ Ui(x̄, ω)

x′ = Ti(x̄, u, ω)

(2)

Goal: Find πi(x, ω) that solves (1) for each i ∈ N , x, and ω

(A1) N is finite

(A2) Ωi is finite and ωi is node-wise independent ∀i ∈ N

(A3) Excluding cost-to-go term, subproblem (2) is an LP

(A4) Subproblem (2) has finite optimal solution

(A5) Hit leaf node with probability 1 (or graph G is acyclic)



Policy Graphs with Partial Observability

Extend policy graph to:

G = (R,N , E ,Φ,A)

where A partitions N : ⋃
A∈A

A = N A ∩ A′ = ∅, A 6= A′

We know the current ambiguity set, A, but not which node

Full observability:

A = {{i} : i ∈ N}, i.e., |A| = 1

But, could have |A| = 2, where we know the stage but not the node



Updates to the Belief State

R

DA HA

DB HB
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A = {A1, A2}, with A1 = {DA, DB} and A2 = {HA, HB}

P{Node = k |ω,A} =
1k∈A · P{ω |Node = k}P{Node = k}

P{ω}

bk ←
[1k∈A · P(ω ∈ Ωk)]

∑
i∈N biφik∑

i∈N bi
∑

j∈A φijP(ω ∈ Ωj)

b← B(b, ω) =
Dω
AΦ>b∑

i∈N bi
∑

j∈A φijP(ω ∈ Ωj)



Policy Graphs with Partial Observability

Each node:

b← B(b, ω)
u = πi(x, ω, b)
x′ = Ti(x, u, ω)

Ωi

Ci(x, u, ω)

x, b x′, b

ω

• All nodes in an ambiguity set have the same Ci, Ti, and Ui

• Children i+, transition probabilities φij, even Ωi may differ



Policy Graphs with Partial Observability

min
π

Ei∈R+; ω∈Ωi[Vi(xR, Bi(bR, ω), ω)] (3)

where
Vi(x, b, ω) = min

u,x̄,x′
Ci(x̄, u, ω) + V(x′, b)

s.t. x̄ = x
u ∈ Ui(x̄, ω)
x′ = Ti(x̄, u, ω)

and where

V(x′, b) =
∑
j∈N

bj
∑
k∈N

φjk
∑
ϕ∈Ωk

P(ϕ ∈ Ωk) · Vk(x′, Bk(b, ϕ), ϕ)

Goal: Find πA(x, b, ω) that solves (3) for each A ∈ A, x, b, and ω



Saddle Property of Cost-to-go Function

Vi(x, b, ω) = min
u,x̄,x′

Ci(x̄, u, ω) + V(x′, b)

s.t. x̄ = x

u ∈ Ui(x̄, ω)

x′ = Ti(x̄, u, ω)

where

V(x′, b) =
∑
j∈N

bj
∑
k∈N

φjk
∑
ϕ∈Ωk

P(ϕ ∈ Ωk) · Vk(x′, Bk(b, ϕ), ϕ)

Assume (A1)-(A5) with G acyclic

Lemma 1. Fix i, b, ω. Then, Vi(x, b, ω) is piecewise linear convex in x.

Lemma 2. Fix x′. Then, V(x′, b) is piecewise linear concave in b.

Theorem 1. V(x′, b) is a piecewise linear saddle function, which is convex in x′

for fixed b and concave in b for fixed x′.



Linear Interpolation: Towards an SDDP Algorithm

b̄1 = 0 b̄2 b̄3 b̄4 b̄5 = 1
b

V
(b

)

V(b) = max
γ≥0

K∑
k=1

γkV(b̄k)

s.t.
K∑
k=1

γk = 1

K∑
k=1

γkb̄k = b



Saddle Function with Interpolated Cuts

x′

b

V
(x

′ ,
b)



Computing Cuts for What?

Vi(x, b, ω) = min
u,x̄,x′

Ci(x̄, u, ω) + VA(x′, b)

s.t. x̄ = x
u ∈ Ui(x̄, ω)
x′ = Ti(x̄, u, ω)

where

VA(x′, b) =
∑
j∈A

bj
∑
k∈j+

φjk
∑
ϕ∈Ωk

P(ϕ ∈ Ωk) · Vk(x′, Bk(b, ϕ), ϕ)



SDDP Master Program

V K
i (x, b, ω) = min

u,x̄,x′,θ
max
γ≥0

Ci(x̄, u, ω) +
K∑
k=1

γkθk

s.t. x̄ = x [λ]
u ∈ Ui(x̄, ω)
x′ = Ti(x̄, u, ω)
K∑
k=1

γkbk = b [µ]

K∑
k=1

γk = 1 [ν]

θk ≥ Gkx
′ + gk, k = 1, . . . , K



SDDP Master Program

V K
i (x, b, ω) = min

u,x̄,x′,ν,µ
Ci(x̄, u, ω) + µ>b + ν

s.t. x̄ = x, [λ]
u ∈ Ui(x̄, ω)
x′ = Ti(x̄, u, ω)
µ>bk + ν ≥ Gkx

′ + gk, k = 1, . . . , K

Theorem 2. Assume (A1)-(A5) with G acyclic. Let the sample
paths of the “obvious” SDDP algorithm be generated independently
at each iteration. Then, the algorithm converges to an optimal
policy almost surely in a finite number of iterations.



Inventory Example
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DB HB
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Demand model A: P(ω = 1) = 0.2 P(ω = 2) = 0.8

Demand model B: P(ω = 1) = 0.8 P(ω = 2) = 0.2

Di : Di(x) = min
u,x′≥0

u + Eω[Hi(x
′, ω)]

s.t. x′ = x + u

Hi : Hi(x, ω) = min
u,x′≥0

2u + x′ + ρDi(x)

s.t. x′ = x + u− ω



Inventory Example: Train Four Policies

1. fully observable: distribution known upon departing R

2. partially observable: ambiguity partition {DA, DB}, {HA, HB}
3. risk-neutral average demand : demand equally likely to be 1 or 2

4. DRO average demand : modified χ2 method with radius 0.25



Inventory Example: Train Four Policies

• 2000 out-of-sample costs over 50 periods; quartiles; ρ = 0.9
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Inventory Example
One Sample Path of the Partially Observable Policy
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Concluding Thoughts

• Partially observable multistage stochastic programs

– Saddle-cut SDDP algorithm

– SDDP.jl (Dowson and Kapelevich)

• Related saddle-function work in stochastic programming

– Baucke et al. (2018): risk measures

– Downward et al. (2018): stage-wise dependent obj. coefficients

• Closely related ideas are well known in POMDPs

– Contextual, multi-model, concurrent MDPs

– We allow continuous state and action spaces via convexity

• Countably infinite LPs for cyclic case

• We did not handle decision-dependent learning

– b← B(b, ω) versus b← B(b, ω, u)



Concluding Thoughts

http://www.optimization-online.org/DB_HTML/2019/03/7141.html




